Online handwriting recognition with support vector machines - a kernel approach
نویسندگان
چکیده
In this contribution we describe a novel classification approach for on-line handwriting recognition. The technique combines dynamic time warping (DTW) and support vector machines (SVMs) by establishing a new SVM kernel. We call this kernel Gaussian DTW (GDTW) kernel. This kernel approach has a main advantage over common HMM techniques. It does not assume a model for the generative class conditional densities. Instead, it directly addresses the problem of discrimination by creating class boundaries and thus is less sensitive to modeling assumptions. By incorporating DTW in the kernel function, general classification problems with variable-sized sequential data can be handled. In this respect the proposed method can be straightforwardly applied to all classification problems, where DTW gives a reasonable distance measure, e.g. speech recognition or genome processing. We show experiments with this kernel approach on the UNIPEN handwriting data, achieving results comparable to an HMMbased technique.
منابع مشابه
Face Recognition using Eigenfaces , PCA and Supprot Vector Machines
This paper is based on a combination of the principal component analysis (PCA), eigenface and support vector machines. Using N-fold method and with respect to the value of N, any person’s face images are divided into two sections. As a result, vectors of training features and test features are obtain ed. Classification precision and accuracy was examined with three different types of kernel and...
متن کاملScale-Invariance of Support Vector Machines based on the Triangular Kernel
This report focuses on the scale-invariance and the good performances of Support Vector Machines based on the triangular kernel. After a mathematical analysis of the scale-invariance of learning with that kernel, we illustrate its behavior with a simple 2D classi cation problem and compare its performances to those of a Gaussian kernel on face detection and handwritten character recognition Key...
متن کاملOnline Handwritten Character Recognition for Devanagari and Tamil Scripts Using Support Vector Machines
متن کامل
Separating Well Log Data to Train Support Vector Machines for Lithology Prediction in a Heterogeneous Carbonate Reservoir
The prediction of lithology is necessary in all areas of petroleum engineering. This means that to design a project in any branch of petroleum engineering, the lithology must be well known. Support vector machines (SVM’s) use an analytical approach to classification based on statistical learning theory, the principles of structural risk minimization, and empirical risk minimization. In this res...
متن کاملOnline Arabic Handwriting Recognition Based on Classifier Combination
Handwriting recognition is a rich and complex issue. Some of its problems include the large shape variations in human handwriting. Classifier combination contributes in increasing the classification accuracy compared to the performance of individual classifier. In this paper, we present an online handwriting recognizer based on classifier combination according to holistic approach. We propose t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002